Polar head groups are important for barrier-protective effects of oxidized phospholipids on pulmonary endothelium.
نویسندگان
چکیده
We have previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cell (EC) barrier function and demonstrated the critical role of cyclopentenone-containing modifications of arachidonoyl moiety in OxPAPC protective effects. In this study we used oxidized phosphocholine (OxPAPC), phosphoserine (OxPAPS), and glycerophosphate (OxPAPA) to investigate the role of polar head groups in EC barrier-protective responses to oxidized phospholipids (OxPLs). OxPAPC and OxPAPS induced sustained barrier enhancement in pulmonary EC, whereas OxPAPA caused a transient protective response as judged by measurements of transendothelial electrical resistance (TER). Non-OxPLs showed no effects on TER levels. All three OxPLs caused enhancement of peripheral EC actin cytoskeleton. OxPAPC and OxPAPS completely abolished LPS-induced EC hyperpermeability in vitro, whereas OxPAPA showed only a partial protective effect. In vivo, intravenous injection of OxPAPS or OxPAPC (1.5 mg/kg) markedly attenuated increases in the protein content, cell counts, and myeloperoxidase activities detected in bronchoalveolar lavage fluid upon intratracheal LPS instillation in mice, although OxPAPC showed less potency. All three OxPLs partially attenuated EC barrier dysfunction induced by IL-6 and thrombin. Their protective effects against thrombin-induced EC barrier dysfunction were linked to the attenuation of the thrombin-induced Rho pathway of EC hyperpermeability and stimulation of Rac-mediated mechanisms of EC barrier recovery. These results demonstrate for the first time the essential role of polar OxPL groups in blunting the LPS-induced EC dysfunction in vitro and in vivo and suggest the mechanism of agonist-induced hyperpermeability attenuation by OxPLs via reduction of Rho and stimulation of Rac signaling.
منابع مشابه
Cross talk between paxillin and Rac is critical for mediation of barrier-protective effects by oxidized phospholipids.
We previously reported that the barrier-protective effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cells (ECs) delineate the role of Rac- and Cdc42-dependent mechanisms and described the involvement of the focal adhesion (FA) protein paxillin in enhancement of the EC barrier upon OxPAPC challenge. This study examined a potential role ...
متن کاملEpoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac.
After an acute phase of inflammation or injury, restoration of the endothelial barrier is important to regain vascular integrity and to prevent edema formation. However, little is known about mediators that control restoration of endothelial barrier function. We show here that oxidized phospholipids that accumulate at sites of inflammation and tissue damage are potent regulators of endothelial ...
متن کاملAkt-mediated transactivation of the S1P1 receptor in caveolin-enriched microdomains regulates endothelial barrier enhancement by oxidized phospholipids.
Endothelial cell (EC) barrier dysfunction results in increased vascular permeability, leading to increased mass transport across the vessel wall and leukocyte extravasation, the key mechanisms in pathogenesis of tissue inflammation and edema. We have previously demonstrated that OxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine) significantly enhances vascular endothelial ...
متن کاملOxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo
BACKGROUND Mechanical ventilation at high tidal volume (HTV) may cause pulmonary capillary leakage and acute lung inflammation resulting in ventilator-induced lung injury. Besides blunting the Toll-like receptor-4-induced inflammatory cascade and lung dysfunction in a model of lipopolysaccharide-induced lung injury, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) exe...
متن کاملOxidized phospholipids protect against lung injury and endothelial barrier dysfunction caused by heat-inactivated Staphylococcus aureus.
Increased endothelial cell (EC) permeability and vascular inflammation along with alveolar epithelial damage are key features of acute lung injury (ALI). Products of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine oxidation (OxPAPC) showed protective effects against inflammatory signaling and vascular EC barrier dysfunction induced by gram-negative bacterial wall lipopolysaccharide (L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 292 4 شماره
صفحات -
تاریخ انتشار 2007